Analysis of the Electromechanical Activity of the Heart from Synchronized ECG and PCG Signals of Subjects Under Stress
نویسندگان
چکیده
In this exploratory study we propose to analyze, in healthy adult volunteers, the heart electrical (electrocardiogram, ECG) and mechanical (phonocardiogram, PCG) activity during exercise. Heart sounds amplitude, frequency content, and RS2, may be important features in the non-invasive assessment of heart activity, such as for the estimation of cardiac output and blood pressure. Nine healthy volunteers were monitored with ECG and PCG simultaneously, under a stress test. After each workload level a 10 s window of signal was collected. PCG first (S1) and second (S2) heart sounds were manually annotated, based on time of QRS complex occurrence. A QRS detector was implemented to detect the QRS complex, and time intervals between electrical and mechanical events. Extracted features were analyzed in relation to heart rate (HR), including RS2, S1 and S2 amplitudes, and high frequency content of S1 and S2. Spearman correlation was used. Changes between baseline and maximum workload stage/HR for each volunteer were analyzed. Significant correlation was observed between HR, and all characteristics extracted (P<0.01). There was a clear difference between all variables from baseline to maximum workload level: with increasing workload/HR heart sounds amplitude increased (more pronounced in S1), RS2 decreased, and high frequency content of S2 decreased in relation to the high frequency content of S1, demonstrating that dynamic cardiovascular relations are individualized during cardiac stress and that assumptions for resting conditions may not be assumed.
منابع مشابه
A New Approach to Detect Congestive Heart Failure Using Symbolic Dynamics Analysis of Electrocardiogram Signal
The aim of this study is to show that the measures derived from Electrocardiogram (ECG) signals many a time perform better than the same measures obtained from heart rate (HR) signals. A comparison was made to investigate how far the nonlinear symbolic dynamics approach helps to characterize the nonlinear properties of ECG signals and HR signals, and thereby discriminate between normal and cong...
متن کاملA New Approach to Detect Congestive Heart Failure Using Symbolic Dynamics Analysis of Electrocardiogram Signal
The aim of this study is to show that the measures derived from Electrocardiogram (ECG) signals many a time perform better than the same measures obtained from heart rate (HR) signals. A comparison was made to investigate how far the nonlinear symbolic dynamics approach helps to characterize the nonlinear properties of ECG signals and HR signals, and thereby discriminate between normal and cong...
متن کاملAutomatic classification of normal and abnormal cardiac sounds by combining features based on wavelet transform and capstral coefficients extracted from PCG signals (Research Article)
Cardiac sounds are produced by the mechanical activities of the heart and provide useful information about the function of the heart valves. Due to the transient and unstable nature of the heart's sound and the limitation of the human hearing system, it is difficult to categorize heart sound signals based on what is heard from a stethoscope. Therefore, providing an automated algorithm for prima...
متن کاملMacroscopic Visualization of the Heart Electrical Activity Via an Algebraic Computer Model
In this study, a mathematical model is developed based on algebraic equations which is capable of generating artificially normal events of electrocardiogram (ECG) signals such as P-wave, QRS complex, and T-wave. This model can also be implemented for the simulation of abnormal phenomena of electrocardiographic signals such as ST-segment episodes (i.e. depression, elevation, and sloped ascending...
متن کاملAdaptive Filtering Strategy to Remove Noise from ECG Signals Using Wavelet Transform and Deep Learning
Introduction: Electrocardiogram (ECG) is a method to measure the electrical activity of the heart which is performed by placing electrodes on the surface of the body. Physicians use observation tools to detect and diagnose heart diseases, the same is performed on ECG signals by cardiologists. In particular, heart diseases are recognized by examining the graphic representation of heart signals w...
متن کامل